A note on shrinkage sliced inverse regression
نویسنده
چکیده
We employ Lasso shrinkage within the context of sufficient dimension reduction to obtain a shrinkage sliced inverse regression estimator, which provides easier interpretations and better prediction accuracy without assuming a parametric model. The shrinkage sliced inverse regression approach can be employed for both single-index and multiple-index models. Simulation studies suggest that the new estimator performs well when its tuning parameter is selected by either the Bayesian information criterion or the residual information criterion.
منابع مشابه
Cluster-based regularized sliced inverse regression for forecasting macroeconomic variables
This article concerns the dimension reduction in regression for large dataset. We introduce a new method based on the sliced inverse regression approach, called cluster-based regularized sliced inverse regression. Our method not only keeps the merit of considering both response and predictors information, but also enhances the capability of handling highly correlated variables. It is justified ...
متن کاملAn investigation of sliced inverse regression with censored data
An Investigation of Sliced Inverse Regression with Censored Data Daniel Riggs August,62010 The complexity of high-dimensional data creates a number of concerns when trying to analyze it. This data often consists of a response or survival time and potentially thousands of predictors. These predictors can be highly correlated, and the sample size is often very small and right censored. Sliced inv...
متن کاملLocalized Sliced Inverse Regression
We developed localized sliced inverse regression for supervised dimension reduction. It has the advantages of preventing degeneracy, increasing estimation accuracy, and automatic subclass discovery in classification problems. A semisupervised version is proposed for the use of unlabeled data. The utility is illustrated on simulated as well as real data sets.
متن کاملSufficient dimension reduction in regressions across heterogeneous subpopulations
Sliced inverse regression is one of the widely used dimension reduction methods. Chiaromonte and co-workers extended this method to regressions with qualitative predictors and developed a method, partial sliced inverse regression, under the assumption that the covariance matrices of the continuous predictors are constant across the levels of the qualitative predictor. We extend partial sliced i...
متن کاملForward Selection and Estimation in High Dimensional Single Index Models
We propose a new variable selection and estimation technique for high dimensional single index models with unknown monotone smooth link function. Among many predictors, typically, only a small fraction of them have significant impact on prediction. In such a situation, more interpretable models with better prediction accuracy can be obtained by variable selection. In this article, we propose a ...
متن کامل